
WAPH - Web Application Programming and
Hacking
Instructor: Dr. Phu Phung
Student
Name : Vijaykumar Gandi

Email : gandivr@mail.uc.edu

Profile Pic :

Repository information for Lab-1
Repository URL : https://github.com/gandivr/waph-gandivr/tree/main/labs/lab1

Lab-1 : FOundations of the Web
This Lab Covers more on the Foundations of the web , triggering more on HTTP
Request , Response using WIreshark and telnet and basic web programming. It
also covers the aspects of security in different ways.

Part I: Web and hTTP Protocol
In part-1 I came across the web and the HTTP Protocol, where I went through
two sub tasks mentioned below.

Task 1: Installing and Configuring Wireshark

Installation:
• I have Installed Wireshark using the command: sudo apt install wireshark-

qt.And Launched Wireshark from the terminal with elevated privileges:
sudo wireshark &.

1



Configuration:
• I have Configured Wireshark to capture data from all network inter-

faces.Initiated packet capture by clicking on the Start icon in Wireshark.

Browsing example.com:
Firstly, I have Accessed example.com in the browser and then Halted the packet
capture by clicking on the Stop icon in Wireshark. Then we have to apply the
filter and I have Applied a filter to focus on HTTP results, where I Explored
detailed request and response messages by clicking on them. Utilized Follow >
HTTP Stream to visualize the stream of request and response messages.

Screenshots:

Request message:

Figure 1: Screen-1

Response message:

Stream view:

Task 2: Telnet Connection and Analysis

• Coming to task-2 I got a good understanding of HTTP using telnet and
Wireshark.We must start with the Telnet Connection. Firstly, I have
Started packet capture in Wireshark. Then I have Established a connection
to the web server at port 80 using the command: telnet example.com
80.Then after connecting I sent an HTTP request in the terminal by using
the snippet below.

2



Figure 2: Screen-2

Figure 3: Screen-3

3



GET /index.html HTTP/1.0
Host: example.com

• We have to stop the Wireshark and observe the request and response slots
in both Wireshark and terminal, then I followed the same and Terminated
Wireshark capture and examined HTTP request and response messages.

Screenshots:

Terminal Screenshot (HTTP request and response):

Figure 4: Screen-4

HTTP request in Wireshark:

HTTP response in Wireshark:

Part II - Basic Web Application Programming:

Task 1: CGI web applications in C.

HelloWorld CGI Program:

I have Created and compiled a helloworld.c program. Then Enabled CGI daemon,
restarted Apache server where I Copied helloworld.cgi to /usr/lib/cgi-bin. I have
Accessed http://localhost/cgi-bin/helloworld.cgi in the browser.

Observed output:

Program Output:

4



Figure 5: Screen-5

Figure 6: Screen-6

5



Figure 7: Screen-7

Figure 8: Screen-8

6



Index CGI Program:

And then I have Created and compiled another c program (index.c). Copied
index.cgi to /usr/lib/cgi-bin. Then I have Accessed http://localhost/cgi-
bin/index.cgi in the browser.

Below is the Program Source Code.

#include <stdio.h>
int main(void) {
printf("content-TYpe: text/html; charset=utf-8\n\n");
printf("<!DOCTYPE html>\n");
printf("<html>\n");
printf("<head>\n");
printf("<title> WAPH-Vijaykumar Gandi </title>\n");
printf("<head>\n");
printf("<body>\n");
printf("<h1> WAPH WHich is known as web application programming and hacking </h1>\n");
printf("<p> Vijaykumar Gandi\n");
printf("<p> I have minimal knowledge on web development and currently im going with this course to learn web application programming and hacking \n");
printf("<body>\n");
printf("<html>\n");
return 0;

}

Observed output:

Figure 9: Screen-10

Output:

7



Figure 10: Screen-11

Task 2: PHP Programs

HelloWorld PHP Program:
I have Installed PHP and the PHP Apache module. And then Created
helloworld.php and copied it to /var/www/html. And then I Accessed
http://localhost/helloworld.php in the browser.

Observed output:

OUtput:

PHP with URL Parameters:

I have Created echo.php with PHP code. And then I have Accessed
http://localhost/echo.php?data=HelloWorld in the browser.

Observed output:

Security Risks:

• Any user-supplied data is immediately returned by the code, which, if
improperly handled, can reveal sensitive information. Passwords, internal
system information, and other private information may fall under this
category. Unexpected input may result from the ‘data’ parameter not
being validated. Processing unexpected or improper data could come from
this.

8



Figure 11: Screen-13

Figure 12: Screen-12

9



Figure 13: Screen-14

Task 3: Wireshark Analysis for GET and POST Requests

GET Request:
I have Started Wireshark capture. And then I have Accessed http://localhost/echo.php?data=HelloWorld
in the browser. We have to stop Wireshark and observe the request and response
in both terminal and Wireshark then I have followed the same and Stopped
Wireshark and examined request and response messages.

GET Request OUtputs:

Output:

Output:

POST Request:
I have Initiated Wireshark capture. Then I Executed curl -X POST
http://localhost/echo.php -d “data=Hello World!”. I have Checked output in
the terminal. As the process I have Closed Wireshark and reviewed HTTP
stream.

POST Request:

Output:

Output:

10



Figure 14: Screen-15

Figure 15: Screen-16

11



Figure 16: Screen-17

Figure 17: Screen-19

12



Comparison of GET and POST Requests:
I have Compared request messages in Wireshark.Noted that although the response
message is the same, GET embeds data in the URL, while POST sends data in
the header.

13


	WAPH - Web Application Programming and Hacking
	Instructor: Dr. Phu Phung
	Student
	Repository information for Lab-1
	Lab-1 : FOundations of the Web
	Part I: Web and hTTP Protocol
	Installation:
	Configuration:
	Browsing example.com:
	Part II - Basic Web Application Programming:
	HelloWorld CGI Program:
	Index CGI Program:
	Task 2: PHP Programs

	HelloWorld PHP Program:
	PHP with URL Parameters:
	Task 3: Wireshark Analysis for GET and POST Requests

	GET Request:

	POST Request:
	Comparison of GET and POST Requests:

